CETH Snakebite Project

Project Background Snakebite is arguably the most neglected of neglected tropical diseases. It is a disease of poverty with numbers of fatalities comparable to that of AIDS in some developing countries. Predominantly killing young and otherwise healthy individuals, neurotoxins paralyze their victims --resulting in death by respiratory failure. Most of these victims would likely survive with early access to emergency care. There is currently little funding to devise new approaches to address this problem, but with a volunteer, collaborative effort with colleagues at UCSF we have made the first inroad to solving a part of this ancient scourge and persistent modern tragedy.

 

Anticholinesterases are a group of commonly used, heat stable and inexpensive drugs that have been used for decades to reverse chemically- induced paralysis in operating rooms and, in intravenous form, to treat snakebite when antivenoms are not available or not effective. They have also been used with experimental success in animal models. We argue that developing inexpensive, heat-stable, easy-to-administer anti-paralytics could facilitate early treatment of snakebite and save lives. We recently made the first successful attempt to create a human model for neurotoxic paralysis specifically designed to test whether anticholinesterases can reverse paralysis caused by a drug that mimics neurotoxic snakebite paralysis. Our finding suggests a novel strategy for field treatment that could substantially decrease the worldwide burden of neurotoxic envenomation.

 

Dr. Matthew Lewin, 2011          Dr. Stephen Samuel

 

Dr. Matthew Lewin (Left) on expedition, discussing snakebite management with field scientists. Dr. Stephen Samuel (Right) in the laboratory. Dr. Lewin of the California Academy of Sciences and Dr. Samuel of Trinity College, Dublin and PSG Medical Research Institute, Coimbatore, Tamil Nadu, India are teaming up to combat the global epidemic of snakebite. 

 

 

Research Publications

Reversal of experimental paralysis in a human by intranasal neostigmine aerosol suggests a novel approach to the early treatment of neurotoxic envenomation

Matthew R. Lewin, Philip Bickler, Tom Heier, John Feiner, Lance Montauk and Brett Mensh

Article first published online:  24 July 2013,  DOI: 10.1002/ccr3.3

 

 

We described the reversal of experimental paralysis using nasal spray neostigmine in a healthy human volunteer.  The development of a heat stable, inexpensive antidote to neurotoxins could save lives in the setting of snakbite or other neurotoxic envenomations.  Current treatments are generally limited to hospitals and clinics with antivenins and intensive care capabilities.  Our findings suggest a novel approach to the treatment of neurotoxic and other snakebites warranting future investigation.  

 

For publication link, click here

 

 

 

Media Coverage

  • Bay Area doctors create snake bite nasal spray treatment KGO/ABC7
  • Potential treatment for snakebites Leads to a paralyzing test NPR
  • How to survive a snakebite Discovery News
  • New approach to treating venomous snakebites could reduce global fatalities Science Daily
  • First-aid snakebite drug could save thousands of lives Discover
  • Nasal spray marks latest treatment for snake bites Medical Daily